Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Oncoimmunology ; 12(1): 2163785, 2023.
Article in English | MEDLINE | ID: covidwho-2166017

ABSTRACT

The SARS-CoV-2 pandemic still represents a threat for immunosuppressed and hematological malignancy (HM) bearing patients, causing increased morbidity and mortality. Given the low anti-SARSCoV-2 IgG titers post-vaccination, the COVID-19 threat prompted the prophylactic use of engineered anti-SARS-CoV-2 monoclonal antibodies. In addition, potential clinical significance of T cell responses has been overlooked during the first waves of the pandemic, calling for additional in-depth studies. We reported that the polarity and the repertoire of T cell immune responses govern the susceptibility to SARS-CoV-2 infection in health care workers and solid cancer patients. Here, we longitudinally analyzed humoral and cellular immune responses at each BNT162b2 mRNA vaccine injection in 47 HM patients under therapy. Only one-third of HM, mostly multiple myeloma (MM) bearing patients, could mount S1-RBD-specific IgG responses following BNT162b2 mRNA vaccines. This vaccine elicited a S1-RBD-specific Th1 immune response in about 20% patients, mostly in MM and Hodgkin lymphoma, while exacerbating Th2 responses in the 10% cases that presented this recognition pattern at baseline (mostly rituximab-treated patients). Performing a third booster barely improved the percentage of patients developing an S1-RBD-specific Th1 immunity and failed to seroconvert additional HM patients. Finally, 16 patients were infected with SARS-CoV-2, of whom 6 developed a severe infection. Only S1-RBD-specific Th1 responses were associated with protection against SARS-CoV2 infection, while Th2 responses or anti-S1-RBD IgG titers failed to correlate with protection. These findings herald the paramount relevance of vaccine-induced Th1 immune responses in hematological malignancies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Multiple Myeloma , Vaccines , Humans , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , RNA, Viral , Hematologic Neoplasms/complications , Antibodies, Viral , Immunoglobulin G
2.
Cell Death Dis ; 12(3): 258, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1132059

ABSTRACT

The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, were altered in critical COVID-19 patient's plasma as compared to mild COVID-19 patients. Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.


Subject(s)
COVID-19/blood , Metabolome , SARS-CoV-2/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Biomarkers/blood , COVID-19/diagnosis , Female , Humans , Male , Metabolomics , Prognosis , COVID-19 Drug Treatment
4.
Nat Cancer ; 1(10): 965-975, 2020 10.
Article in English | MEDLINE | ID: covidwho-798872

ABSTRACT

Patients with cancer are presumed to be at increased risk of severe COVID-19 outcomes due to underlying malignancy and treatment-induced immunosuppression. Of the first 178 patients managed for COVID-19 at the Gustave Roussy Cancer Centre, 125 (70.2%) were hospitalized, 47 (26.4%) developed clinical worsening and 31 (17.4%) died. An age of over 70 years, smoking status, metastatic disease, cytotoxic chemotherapy and an Eastern Cooperative Oncology Group score of ≥2 at the last visit were the strongest determinants of increased risk of death. In multivariable analysis, the Eastern Cooperative Oncology Group score remained the only predictor of death. In contrast, immunotherapy, hormone therapy and targeted therapy did not increase clinical worsening or death risk. Biomarker studies found that C-reactive protein and lactate dehydrogenase levels were significantly associated with an increased risk of clinical worsening, while C-reactive protein and D-dimer levels were associated with an increased risk of death. COVID-19 management impacted the oncological treatment strategy, inducing a median 20 d delay in 41% of patients and adaptation of the therapeutic strategy in 30% of patients.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/pathogenicity , Aged , Cohort Studies , Female , Humans , Male , Middle Aged
5.
Cell ; 182(6): 1401-1418.e18, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-694669

ABSTRACT

Blood myeloid cells are known to be dysregulated in coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2. It is unknown whether the innate myeloid response differs with disease severity and whether markers of innate immunity discriminate high-risk patients. Thus, we performed high-dimensional flow cytometry and single-cell RNA sequencing of COVID-19 patient peripheral blood cells and detected disappearance of non-classical CD14LowCD16High monocytes, accumulation of HLA-DRLow classical monocytes (Human Leukocyte Antigen - DR isotype), and release of massive amounts of calprotectin (S100A8/S100A9) in severe cases. Immature CD10LowCD101-CXCR4+/- neutrophils with an immunosuppressive profile accumulated in the blood and lungs, suggesting emergency myelopoiesis. Finally, we show that calprotectin plasma level and a routine flow cytometry assay detecting decreased frequencies of non-classical monocytes could discriminate patients who develop a severe form of COVID-19, suggesting a predictive value that deserves prospective evaluation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Flow Cytometry , Humans , Leukocyte L1 Antigen Complex , Monocytes , Myeloid Cells , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL